Mathematical economics is the application of mathematical methods to represent economic theories and analyze problems posed in economics. It allows formulation and derivation of key relationships in a theory with clarity, generality, rigor, and simplicity. By convention, the methods refer to those beyond simple geometry, such as differential and integral calculus, difference and differential equations, matrix algebra, and mathematical programming[1][2] and other computational methods.[3]

Mathematics allows economists to form meaningful, testable propositions about many wide-ranging and complex subjects which could not be adequately expressed informally. Further, the language of mathematics allows economists to make clear, specific, positive claims about controversial or contentious subjects that would be impossible without mathematics.[4] Much of economic theory is currently presented in terms of mathematical economic models, a set of stylized and simplified mathematical relationships that clarify assumptions and implications.[5]

Broad applications include:
• optimization problems as to goal equilibrium, whether of a household, business firm, or policy maker
• static (or equilibrium) analysis in which the economic unit (such as a household) or economic system (such as a market or the economy) is modeled as not changing
• comparative statics as to a change from one equilibrium to another induced by a change in one or more factors
• dynamic analysis, tracing changes in an economic system over time, for example from economic growth.[1][6] [7]

Formal economic modeling began in the 19th century with the use of differential calculus to represent and explain economic behavior, such as utility maximization, an early economic application of mathematical optimization. Economics became more mathematical as a discipline throughout the first half of the 20th century, but introduction of new and generalized techniques in the period around the Second World War, as in game theory, would greatly broaden the use of mathematical formulations in economics.[8][7]

This rapid systematizing of economics alarmed critics of the discipline as well as some noted economists. John Maynard Keynes, Robert Heilbroner, Friedrich Hayek and others have criticized the broad use of mathematical models for human behavior, arguing that some human choices are irreducible to mathematics.

Application

Much of classical economics can be presented in simple geometric terms or elementary mathematical notation. Mathematical economics, however, conventionally makes use of calculus and matrix algebra in economic analysis in order to make powerful claims that would be more difficult without such mathematical tools. These tools are prerequisites for formal study, not only in mathematical economics but in contemporary economic theory in general. Economic problems often involve so many variables that mathematics is the only practical way of attacking and solving them. Alfred Marshall argued that every economic problem which can be quantified, analytically expressed and solved, should be treated by means of mathematical work.[83]

Economics has become increasingly dependent upon mathematical methods and the mathematical tools it employs have become more sophisticated. As a result, mathematics has become considerably more important to professionals in economics and finance. Graduate programs in both economics and finance require strong undergraduate preparation in mathematics for admission and, for this reason, attract an increasingly high number of mathematicians. Applied mathematicians apply mathematical principles to practical problems, such as economic analysis and other economics-related issues, and many economic problems are often defined as integrated into the scope of applied mathematics.[16]

This integration results from the formulation of economic problems as stylized models with clear assumptions and falsifiable predictions. This modeling may be informal or prosaic, as it was in Adam Smith’s The Wealth of Nations, or it may be formal, rigorous and mathematical.

Broadly speaking, formal economic models may be classified as stochastic or deterministic and as discrete or continuous. At a practical level, quantitative modeling is applied to many areas of economics and several methodologies have evolved more or less independently of each other.

  • Stochastic models are formulated using stochastic processes. They model economically observable values over time. Most of econometrics is based on statistics to formulate and test hypotheses about these processes or estimate parameters for them. Between the World Wars, Herman Wold developed a representation of stationary stochastic processes in terms of autoregressive models and a determinist trend. Wold and Jan Tinbergen applied time-series analysis to economic data. Contemporary research on time series statistics consider additional formulations of stationary processes, such as autoregressive moving average models. More general models include autoregressive conditional heteroskedasticity (ARCH) models and generalized ARCH (GARCH) models.
  • Non-stochastic mathematical models may be purely qualitative (for example, models involved in some aspect of social choice theory) or quantitative (involving rationalization of financial variables, for example with hyperbolic coordinates, and/or specific forms of functional relationships between variables). In some cases economic predictions of a model merely assert the direction of movement of economic variables, and so the functional relationships are used only in a qualitative sense: for example, if the price of an item increases, then the demand for that item will decrease. For such models, economists often use two-dimensional graphs instead of functions.
  • Qualitative models are occasionally used. One example is qualitative scenario planning in which possible future events are played out. Another example is non-numerical decision tree analysis. Qualitative models often suffer from lack of precision.

Related Post